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Abstract

Quantum phase transitions at absolute zero temperature can take place as some parameter in the Hamiltonian of the system
is varied. For such transitions, crossing the phase boundary means that the quantum ground state changes in some fundamental
way. For the Hamiltonian ofN-electron atoms, this parameter is taken to be the nuclear charge. As the nuclear charge reaches
a critical point, the quantum ground state changes its characters from being bound to being degenerate or absorbed by a
continuum. We describe here a method to calculate the critical nuclear charge for which an atom can bind an extra electron
to form a stable negative ion. The estimate of the critical nuclear charge will be used to explain and predict the stability of
atomic negative ions. The method can be generalized to predict the stability of molecular negative ions. A detailed calculation
for the critical parameters for two center molecular ions is also included. (Int J Mass Spectrom 182/183 (1999) 23–29) © 1999
Elsevier Science B.V.
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1. Introduction

Negative ions are of fundamental importance in
atomic and molecular physics. With the advancement
of spectroscopic and theoretical methods new ions
have been found to be stable with small electron
affinities. Recently, Pegg et al. [1] used photoelectron
detachment spectroscopy to show that the Ca2 ion is
stable with an electron affinity of 0.0436 0.007 eV.
This result is unexpected because in the past it has
been generally believed that negative ions of all
alkaline earths group elements are unstable. The

Periodic Table of the negative atomic ions is still only
beginning to be understood and there is no systematic
way to describe them. Recently, we have found that
one can describe stability and symmetry breaking of
electronic structure configurations as phase transitions
and critical phenomena. This analogy was revealed by
using dimensional scaling method and the large di-
mensional limit model of electronic structure config-
urations [2].

Dimensional scaling method has become a com-
mon technique for simplifying complicated problems
in three-dimensional space. In this method one takes
the dimension of space,D, as a variable, solves the
problem at some dimensionD Þ 3, where the physics
becomes much simpler, and then uses perturbation
theory or other techniques to obtain an approximate
result for D 5 3 [3]. For electronic structure of the
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N-electron atoms, the pseudoclassicalD 3 ` limit is
simple and gives unique geometrical configurations
[4]. This provides a rigorous version of the electron-
dot formula, Lewis structure, where the electrons
assume fixed positions relative to the nuclei and each
other. This simple qualitative picture opens the door
to establish a very interesting connection between
symmetry breaking of the large-D limit configura-
tions, as the nuclear charge is varied, and the standard
mean field theory of phase transitions and critical
phenomena in statistical mechanics.

For theN-electron atoms [5], the mapping between
symmetry breaking of electronic structure configura-
tions and mean field theory of phase transitions was
shown by allowing the nuclear charge to play a role
analogous to temperature in statistical mechanics.

The complete mapping can be represented with the
following analogies [2]: (i) nuclear charge7 temper-
ature, (ii) external electric field7 ordering field, (iii)
ground state energy7 free energy, (iv) asymmetry
parameter7 order parameter, and (v) stability limit
point (critical charge,Zc) 7 critical point (critical
temperature,Tc). Using this scheme, we can define
and calculate the critical exponents (a, b, d, andg) for
the symmetry breaking of electronic structure config-
urations [2].

The large-D picture helps to establish a connection
to phase transitions. However, the questions which
remain to be addressed are: How to carry out such an
analogy to theN-electron atoms atD 5 3 and what
are the physical consequences of this analogy? These
questions can be answered by studying the analytical
behavior of the energies of atoms as a function of the
nuclear charge.

For the two-electron atoms, we used the finite-size
scaling method to obtain the critical nuclear charge, in
this context critical means the minimum nuclear
charge necessary to bind two electrons [6]. By search-
ing for a fixed point of the phenomenological renor-
malization equation, the critical charge is foundZc .
0.911,which is in complete agreement with previous
calculations [7]. The fact that this critical charge is
below Z 5 1 explains why H2 is a stable negative
ion. For the three-electron atoms the critical nuclear

charge for the ground state was found to beZc . 2,
which explains why He2 is an unstable ion [8].

In the next section we will briefly review the finite
size scaling method and the results for two and three
electron atoms. In Sec. 3 we will estimate the critical
charges for negative ions form Be up to Ar. Sec. 4
generalizes the atomic calculations of the critical
parameters to small molecular systems. Finally, we
give the conclusions and discuss the possibility of
describing the negative ions of the elements in a
systematic way.

2. Finite size scaling method

The finite size scaling method was formulated in
statistical mechanics to extrapolate information ob-
tained from a finite system to the thermodynamic limit
[9,10]. In quantum mechanics, when using variation
methods, one encounters the same finite size problem
in studying the critical behavior of a quantum Ham-
iltonian *(l1, . . . , lk) as a function of its set of
parameters {l i}. In this context, critical means the
values of {l i} for which a bound state energy is
nonanalytic. In this study, a critical point is defined as
the point where a bound state energy becomes ab-
sorbed or degenerate with a continuum. In this case,
the finite size corresponds to the number of elements
in a complete basis set used to expand the exact wave
function of a given Hamiltonian.

To carry out the calculations for the critical param-
eters {li}, one should proceed with the following
scheme [6,11]: (i) choose a convenient orthonormal
basis set and calculate the matrix elements of the
Hamiltonian, (ii) calculate the two leading eigenval-
ues of the finite Hamiltonian (of orderN) matrix and
their corresponding correlation length of the classical
pseudosystem

jN~l! 5 2
1

log ~E1
~N!~l!/E0

~N!~l!!
(1)

(iii) use the phenomenological renormalization equa-
tion to obtain a sequence of pseudocritical parameters
l(N)
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jN~l~N,N9!!

N
5

jN9~l~N,N9!!

N9
(2)

whereN is the order of the Hamiltonian matrix and
N9 5 N 2 1, except when there are parity effects,
then one has to takeN9 5 N 2 2, and finally (iv)
extrapolate the values of the sequences to obtain the
critical parameters in the limitN 3 `.

The finite size scaling (FSS) procedure was carried
out for the two and three electron atoms with very
accurate results for the critical nuclear charges. Re-
sults show that the analytical behavior of the energy
as a function of the nuclear charge for lithium is
completely different from that of helium. The first
derivative of the ionization energy with respect to the
nuclear charge develops a steplike discontinuity at
Zc

He . 0.91 for the heliumlike atoms but remains
continuous for the lithiumlike atoms atZc

Li . 2.
Analogy with standard phase transitions show that for
helium, the transition from a bound state to a contin-
uum is “first order” [12], while lithium exhibits a
“second order phase transition” [8].

3. N-Electron atoms

For the N-electron atoms, there are well known
inequalities for the minimum chargeZc necessary to
bindN electrons [7]. Lieb [13] has proved thatNc, the
number of negative particles that can be bound to an
atom of nuclear chargeZ, satisfiesNc , 2Z 1 1.
Currently, as far as we know, there is no numerical
estimates of the critical nuclear charges except for two
[7] and three electron atoms [8] and Herrick and
Stillinger’s estimates ofZc for the neon isoelectronic
sequence,Zc . 8.77[14]. Now our previous analysis
can be generalized to include the generalN-electron
atoms. Especially, the first 18 atoms, where very
accurate ground state energies,E(N, Z), as a function
of both the number of electrons,N, and the nuclear
charge, Z, are available [15]. The search for the
critical nuclear charge as a function of the number of
electrons will be performed using the following equa-
tion

E~N, Zc! 5 E~N 2 1, Zc! (3)

The solution of this equation,Zc(N), means the
minimum charge necessary to bindN electrons. For
neutral atoms, withN 5 Z, the nonrelativistic ground
state energies can be simply written as

E~N, Z! 5 Z2 O
i50

Ci~N!S1

ZD
i

(4)

The leading coefficientsC0 andC1 are known exactly
[15], the rest of the expansion coefficients where
determined by numerically fitting to the reported
accurate energies [16]. In this study, we approximated
the energies with seventh order polynomials.

The results ofZc as a function ofN are given in
Table 1 and shown in Fig. 1. Above the stability line
of Z 5 N 2 1, there are five unstable atomic ions,
He2, Be2, N2, Ne2, Mg2, which means that theZc is
less than or equalZ 5 N 2 1 and these atoms cannot
bind an extra electron. For the rest of the atoms up to
Cl, the value ofZc is below the lineZ 5 N 2 1, and
all atoms can bind an extra electron to form stable
negative ions. These results are in complete agree-
ment with the experimentally recommended electron
affinities [17], which is the measure of the ability of
an atom to bind an additional electron.

4. Two center molecular ions

For molecular systems, the analogy between sym-
metry breaking and phase transitions has already been

Table 1
Approximate critical charges forN-electron atoms

Number of
electrons,
N

Critical
charge,
Zc

Number of
electrons,
N

Critical
charge,
Zc

2 0.91 11 10.21
3 2.08 12 10.96
4 2.87 13 12.14
5 4.10 14 12.98
6 4.98 15 13.82
7 5.87 16 14.93
8 7.03 17 15.80
9 7.89 18 16.63

10 8.76
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established at the large-D limit [18]. For the hydrogen
molecular ion the analogy to standard phase transi-
tions was shown by allowing the inverse internuclear
distance to play a role analogous to temperature in
statistical mechanics. As for theN-electron atoms, to
calculate the critical exponents one can perform the
following mapping [2]: (i) inverse nuclear distance
(1/R) 7 temperatureT, (ii) difference between the
nuclear chargesD 7 ordering fieldh, (iii) ground
state energyE`(R, D) 7 free energyf(T, h), (iv)
asymmetry parameterc [ 2 (­E`(R, D)/­D) 7
order parameterm [ 2(­f(T, h)/­h), and (v)
stability limit point (Rc, D 5 0)7 critical point (Tc,
h 5 0).

The hydrogen molecular ion exhibits a critical
point with mean field critical exponents [2]. For the
Hartree–Fock hydrogen molecule at the large-D limit
symmetry breaking of the electronic structure config-
urations was also described as standard phase transi-
tions which characterized by a bicritical point. This
procedure was generalized to mean field phase dia-
grams for one-electron molecules [18].

Now let us carry out the analysis of stability of
molecular systems at the physical space,D 5 3. As
an example we present detailed calculations for the

simplest molecular systems, the one electron two-
center Coulomb systems. For this system, the nucleiA
and B are located on thez axis atzA 5 2R/ 2 and
zB 5 1R/ 2 with nuclear charges,Za andZb, respec-
tively; the electron is located at (r, z), wherer is the
distance from thez axis.

In the Born-Oppenheimer approximation, the
ground state energy is then parametrically dependent
upon the internuclear distanceR and the difference
between the nuclear charges. To investigate the ana-
lytical behavior of the energy as a function of both
parameters, we used the variational method.

The Hamiltonian of the system can be written in
atomic units as:

*~R, Za, Zb! 5 2
1

2
¹2 2

Za

ra
2

Zb

rb
1

ZaZb

R
(5)

wherera, rb are the electron-nuclear distances. Under
the transformationr 3 r /R the eigenvalues of the
Hamiltonian transform asE 3 ER2 and the Hamil-
tonian (5) in prolate spheroidal coordinates takes the
form

*~R, Za, Zb! 5 2
2

l2 2 m2 H ­

­l
~l2 2 1!

­

­l

1
­

­m
~1 2 m2!

­

­m

1 R@~Za 1 Zb!l

1 ~Za 2 Zb!m#J 1 ZaZbR (6)

and the Jacobian of the transformation is given by

) 5
1
8

~l2 2 m2! (7)

To carry out the variational calculations, we used the
following complete basis set

Fl,m~l, m! 5 exp S2
l 2 1

2 DLm~l 2 1! Pl~m! (8)

wherePl is the Lagrange polynomial of degreel and
Lm is the Laguerre polynomial of degreem and order
0 [19].

Fig. 1. Critical charges forN-electron atoms,Zc, as a function of
the number of electronsN.
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If we fixed Za 5 Zb 5 1 in (6), one recovers the
Hamiltonian of the H2

1 molecular ion. There is no
nonanalytical behavior of the ground state energy as a
function of the parameterR in the present approxi-
mation. This behavior can be understood by taking
into account that electron tunneling between the two
centers has an exponential decay in the internuclear
distance. This means that tunneling is there even for
large distances and the ground state energy curve does
not cut the hydrogen threshold at finiteR [20,21].

In order to study the behavior of the ground state
wave function asR is varied, let us define the
following probability density function:

P~m; R! 5 E
1

`

dl )~l, m!uC0~l, m; R!u2 (9)

where C0 is the ground state wave function. This
function represents the probability density of finding
the electron atm when the distance between the two
centers is fixed atR. In Fig. 2 we plot the probability
densityP as a function ofm for different values ofR.
It is easy to see that at small and large values ofR the
curves have different behavior. For smallR, the
curves show just one maximum atm 5 0, which

means that the electron has high probability to be
found in the plane (x, y, 0), perpendicular to thez
axis. For largeR the curves have two maxima, which
means that it has a minimum in the symmetry plane
and the electron has the same probability to be found
near one or the other center. Fig. 3 shows the position
of the maximammaxas a function ofR. There is a fork
shaped region, 0.8420(5)# R# 0.9432(5) in which the
transition from one maxima to two takes place.

If we fix Za 5 1 and Zb 5 Z . 1 the system
suffers a drastic change. The symmetry of the system
is already broken because the difference between the
two chargesDZ 5 Z 2 1 plays the role of an exter-
nal field [2].

The energy curvesE0/Z2 as a functionR can be
classified into two classes: (i) below a certain value of
the nuclear chargeZ* 5 1.271 156 7(5) theenergy
curve has a minimum and the ion is stable and (ii)
aboveZ* the curve has no minimum and the ion is not
stable. The transition between these two regimes is
analytical, though the behavior of the system is rather
different. We expect that all curves belowZ* might
develop a long range barrier and then metastable
states exist with a long mean lifetime. At theZ* the
system exhibits an inflection point withR* 5

Fig. 2. The probability densityP(m; R) as a function ofm for
several values ofR.

Fig. 3. Position of the probability maximammax as a function ofR.
It is shown here the fork shaped region at which the double maxima
regime starts to develop.
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2.715 320 6(5). Theenergy curve at this point has a
cubic behavior as a function ofR and linear as a
function of Z. The behavior of the energy curves for
large R is asymptotically the same, all of them
approach the hydrogen atom threshold form above. In
Fig. 4 we plot the energy curves for the cases H2

1, Z*,
and HeH11. In this figure one can see that the ion
HeH11 is not stable, the ground state energy curve is
repulsive, in agreement with previous results [22].

5. Discussions

The FSS method of searching forZc for a given
atom, Eq. (2) is general and can be extended to the
whole Periodic Table of elements if one is provided
with a convenient basis set. In this article for atoms
larger than Be we used the already existing ground
state energies as a function of both the number of
electrons and the nuclear charge. These calculations
for the critical nuclear charges were in good agree-
ment with the exact FSS results for He and Li atoms.
Although we examined in this article only the first 18
atoms using the nonrelativistic ground state energies,
this approach can be generalized to include the heavy

elements as well. However, for heavy atoms, one has
to include the relativistic effects. The search for the
critical charges using Eq. (3) is limited to obtain an
approximate critical charge and does not give infor-
mation about the analytical behavior of the energies
near the critical charge nor does it give the critical
exponents. For molecular systems, the energy for H2

1

is an analytical function ofR, but one should expect
a nonanalytical behavior for larger molecular systems,
for which the electron–electron interaction becomes
very important. The advantages of this approach for
molecular systems is that once you calculate the
critical geometry you can predict which molecular
system will be stable.

This approach to explain the stability of atomic
negative ions as a kind of “quantum phase transition”
[23] generate a number of open questions which
should be addressed: (i) what is the order of such
“phase transitions”? (ii) what are the critical expo-
nents? do all elements belong to the same or different
universality classes? (iii) how to compute critical
parameters for molecular systems? and finally (iv)
what is the relevant correlation length and what its
physical meaning? In principle, the phenomenological
renormalization equations in the finite-size scaling
approach might address these questions. In practice,
the complexity of large systems and the lack of
complete basis sets to obtain accurate critical param-
eters invites developing new approximations within
the finite-size scaling approach.
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